Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 926
Filtrar
1.
Bioresour Technol ; 401: 130757, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688392

RESUMEN

The photosynthetic autotrophic production of microalgae is limited by the effective supply of carbon and light energy, and the production efficiency is lower than the theoretical value. Represented by methanol, C1 compounds have been industrially produced by artificial photosynthesis with a solar energy efficiency over 10%, but the complexity of artificial products is weak. Here, based on a construction of chloroplast factory, green microalgae Chlamydomonas reinhardtii CC137c was modified for the bioconversion of formate for biomass production. By screening the optimal combination of chloroplast transport peptides, the cabII-1 cTP1 fusion formate dehydrogenase showed significant enhancement on the conversion of formate with a better performance in the maintenance of light reaction activity. This work provided a new way to obtain bioproducts from solar energy and CO2 with potentially higher-than-nature efficiency by the artificial-natural hybrid photosynthesis.


Asunto(s)
Chlamydomonas reinhardtii , Cloroplastos , Formiatos , Cloroplastos/metabolismo , Formiatos/metabolismo , Chlamydomonas reinhardtii/metabolismo , Fotosíntesis , Formiato Deshidrogenasas/metabolismo , Biomasa
2.
Protein Sci ; 33(5): e4984, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38607190

RESUMEN

Enzyme scaffolding is an emerging approach for enhancing the catalytic efficiency of multi-enzymatic cascades by controlling their spatial organization and stoichiometry. This study introduces a novel family of engineered SCAffolding Bricks, named SCABs, utilizing the consensus tetratricopeptide repeat (CTPR) domain for organized multi-enzyme systems. Two SCAB systems are developed, one employing head-to-tail interactions with reversible covalent disulfide bonds, the other relying on non-covalent metal-driven assembly via engineered metal coordinating interfaces. Enzymes are directly fused to SCAB modules, triggering assembly in a non-reducing environment or by metal presence. A proof-of-concept with formate dehydrogenase (FDH) and L-alanine dehydrogenase (AlaDH) shows enhanced specific productivity by 3.6-fold compared to free enzymes, with the covalent stapling outperforming the metal-driven assembly. This enhancement likely stems from higher-order supramolecular assembly and improved NADH cofactor regeneration, resulting in more efficient cascades. This study underscores the potential of protein engineering to tailor scaffolds, leveraging supramolecular spatial-organizing tools, for more efficient enzymatic cascade reactions.


Asunto(s)
Formiato Deshidrogenasas , Ingeniería de Proteínas , Ingeniería de Proteínas/métodos , Formiato Deshidrogenasas/química
3.
J Agric Food Chem ; 72(17): 9974-9983, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38625685

RESUMEN

5-Methyltetrahydrofolate (5-MTHF) is the sole active form of folate functioning in the human body and is widely used as a nutraceutical. Unlike the pollution from chemical synthesis, microbial synthesis enables green production of 5-MTHF. In this study, Escherichia coli BL21 (DE3) was selected as the host. Initially, by deleting 6-phosphofructokinase 1 and overexpressing glucose-6-phosphate 1-dehydrogenase and 6-phosphogluconate dehydrogenase, the glycolysis pathway flux decreased, while the pentose phosphate pathway flux enhanced. The ratios of NADH/NAD+ and NADPH/NADP+ increased, indicating elevated NAD(P)H supply. This led to more folate being reduced and the successful accumulation of 5-MTHF to 44.57 µg/L. Subsequently, formate dehydrogenases from Candida boidinii and Candida dubliniensis were expressed, which were capable of catalyzing the reaction of sodium formate oxidation for NAD(P)H regeneration. This further increased the NAD(P)H supply, leading to a rise in 5-MTHF production to 247.36 µg/L. Moreover, to maintain the balance between NADH and NADPH, pntAB and sthA, encoding transhydrogenase, were overexpressed. Finally, by overexpressing six key enzymes in the folate to 5-MTHF pathway and employing fed-batch cultivation in a 3 L fermenter, strain Z13 attained a peak 5-MTHF titer of 3009.03 µg/L, the highest level reported in E. coli so far. This research is a significant step toward industrial-scale microbial 5-MTHF production.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , NADP , Oxidación-Reducción , Tetrahidrofolatos , Tetrahidrofolatos/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , NADP/metabolismo , Candida/metabolismo , Candida/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , NAD/metabolismo , Formiato Deshidrogenasas/metabolismo , Formiato Deshidrogenasas/genética
4.
J Inorg Biochem ; 253: 112487, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38306887

RESUMEN

Metal-dependent, nicotine adenine dinucleotide (NAD+)-dependent formate dehydrogenases (FDHs) are complex metalloenzymes coupling biochemical transformations through intricate electron transfer pathways. Rhodobacter capsulatus FDH is a model enzyme for understanding coupled catalysis, in that reversible CO2 reduction and formate oxidation are linked to a flavin mononuclotide (FMN)-bound diaphorase module via seven iron-sulfur (FeS) clusters as a dimer of heterotetramers. Catalysis occurs at a bis-metal-binding pterin (Mo) binding two molybdopterin guanine dinucleotides (bis-MGD), a protein-based Cys residue and a participatory sulfido ligand. Insights regarding the proposed electron transfer mechanism between the bis-MGD and the FMN have been complicated by the discovery that an alternative pathway might occur via intersubunit electron transfer between two [4Fe4S] clusters within electron transfer distance. To clarify this difference, the redox potentials of the bis-MGD and the FeS clusters were determined via redox titration by EPR spectroscopy. Redox potentials for the bis-MGD cofactor and five of the seven FeS clusters could be assigned. Furthermore, substitution of the active site residue Lys295 with Ala resulted in altered enzyme kinetics, primarily due to a more negative redox potential of the A1 [4Fe4S] cluster. Finally, characterization of the monomeric FdsGBAD heterotetramer exhibited slightly decreased formate oxidation activity and similar iron-sulfur clusters reduced relative to the dimeric heterotetramer. Comparison of the measured redox potentials relative to structurally defined FeS clusters support a mechanism by which electron transfer occurs within a heterotetrameric unit, with the interfacial [4Fe4S] cluster serving as a structural component toward the integrity of the heterodimeric structure to drive efficient catalysis.


Asunto(s)
Formiato Deshidrogenasas , NAD , NAD/química , Formiato Deshidrogenasas/química , Electrones , Oxidación-Reducción , Hierro/química , Azufre/química , Formiatos
5.
Sci Rep ; 14(1): 3819, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360844

RESUMEN

Formate dehydrogenase (FDH) is critical for the conversion between formate and carbon dioxide. Despite its importance, the structural complexity of FDH and difficulties in the production of the enzyme have made elucidating its unique physicochemical properties challenging. Here, we purified recombinant Methylobacterium extorquens AM1 FDH (MeFDH1) and used cryo-electron microscopy to determine its structure. We resolved a heterodimeric MeFDH1 structure at a resolution of 2.8 Å, showing a noncanonical active site and a well-embedded Fe-S redox chain relay. In particular, the tungsten bis-molybdopterin guanine dinucleotide active site showed an open configuration with a flexible C-terminal cap domain, suggesting structural and dynamic heterogeneity in the enzyme.


Asunto(s)
Proteínas Bacterianas , Formiato Deshidrogenasas , Methylobacterium extorquens , Microscopía por Crioelectrón , Formiato Deshidrogenasas/química , Methylobacterium extorquens/enzimología , Proteínas Bacterianas/genética
6.
Appl Microbiol Biotechnol ; 108(1): 140, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231394

RESUMEN

Enzymes have become important tools in many industries. However, the full exploitation of their potential is currently limited by a lack of efficient and cost-effective methods for enzyme purification from microbial production. One technology that could solve this problem is foam fractionation. In this study, we show that diverse natural foam-stabilizing proteins fused as F-Tags to ß-lactamase, penicillin G acylase, and formate dehydrogenase, respectively, are able to mediate foaming and recovery of the enzymes by foam fractionation. The catalytic activity of all three candidates is largely preserved. Under appropriate fractionation conditions, especially when a wash buffer is used, some F-Tags also allow nearly complete separation of the target enzyme from a contaminating protein. We found that a larger distance between the F-Tag and the target enzyme has a positive effect on the maintenance of catalytic activity. However, we did not identify any particular sequence motifs or physical parameters that influenced performance as an F-tag. The best results were obtained with a short helical F-Tag, which was originally intended to serve only as a linker sequence. The findings of the study suggest that the development of molecular tags that enable the establishment of surfactant-free foam fractionation for enzyme workup is a promising method. KEY POINTS: • Foam-stabilizing proteins mediate activity-preserving foam fractionation of enzymes • Performance as an F-Tag is not restricted to particular structural motifs • Separation from untagged protein benefits from low foam stability and foam washings.


Asunto(s)
Fraccionamiento Químico , Penicilina Amidasa , Formiato Deshidrogenasas , Industrias , Tensoactivos
7.
FEMS Microbiol Lett ; 3712024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38196139

RESUMEN

Reduction of CO2 to formate utilizing formate dehydrogenases (FDHs) has been attempted biologically and electrochemically. However, the conversion efficiency is very low due to the low energy potential of electron donors and/or electron competition with other electron acceptors. To overcome such a low conversion efficiency, I focused on a direct electron transfer between two unrelated redox enzymes for the efficient reduction of CO2 and utilized the quantum mechanical magnetic properties of the [Fe-S] ([iron-sulfur]) cluster to develop a novel electron path. Using this electron path, we connected non-interacting carbon monoxide dehydrogenase and FDH, constructing a synthetic carbon monoxide:formate oxidoreductase as a single functional enzyme complex in the previous study. Here, a theoretical hypothesis that can explain the direct electron transfer phenomenon based on the magnetic properties of the [Fe-S] cluster is proposed.


Asunto(s)
Dióxido de Carbono , Electrones , Dióxido de Carbono/metabolismo , Transporte de Electrón , Oxidación-Reducción , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Formiatos/metabolismo
8.
Biotechnol J ; 19(1): e2300330, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38180313

RESUMEN

NAD+ -dependent formate dehydrogenase (FDH) catalyzes the conversion of formate and NAD+ to produce carbon dioxide and NADH. The reaction is biotechnologically important because FDH is widely used for NADH regeneration in various enzymatic syntheses. However, major drawbacks of this versatile enzyme in industrial applications are its low activity, requiring its utilization in large amounts to achieve optimal process conditions. Here, FDH from Bacillus simplex (BsFDH) was characterized for its biochemical and catalytic properties in comparison to FDH from Pseudomonas sp. 101 (PsFDH), a commonly used FDH in various biocatalytic reactions. The data revealed that BsFDH possesses high formate oxidizing activity with a kcat value of 15.3 ± 1.9 s-1 at 25°C compared to 7.7 ± 1.0 s-1 for PsFDH. At the optimum temperature (60°C), BsFDH exhibited 6-fold greater activity than PsFDH. The BsFDH displayed higher pH stability and a superior tolerance toward sodium azide and H2 O2 inactivation, showing a 200-fold higher Ki value for azide inhibition and remaining stable in the presence of 0.5% H2 O2 compared to PsFDH. The application of BsFDH as a cofactor regeneration system for the detoxification of 4-nitrophenol by the reaction of HadA, which produced a H2 O2 byproduct was demonstrated. The biocatalytic cascades using BsFDH demonstrated a distinct superior conversion activity because the system tolerated H2 O2 well. Altogether, the data showed that BsFDH is a robust enzyme suitable for future application in industrial biotechnology.


Asunto(s)
Bacillus , Formiato Deshidrogenasas , NAD , Formiato Deshidrogenasas/metabolismo , NAD/metabolismo , Catálisis , Formiatos
9.
Bioresour Technol ; 393: 130027, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37977496

RESUMEN

Bioconversion of CO2 to high-valuable products is a globally pursued sustainable technology for carbon neutrality. However, low CO2 activation with formate dehydrogenase (FDH) remains a major challenge for further upcycling due to the poor CO2 affinity, reduction activity and stability of currently used FDHs. Here, we present two recombined mutants, ΔFDHPa48 and ΔFDHPa4814, which exhibit high CO2 reduction activity and antioxidative activity. Compared to FDHPa, the reduction activity of ΔFDHPa48 was increased up to 743 % and the yield in the reduction of CO2 to methanol was increased by 3.16-fold. Molecular dynamics identified that increasing the width of the substrate pocket of ΔFDHPa48 could improve the enzyme reduction activity. Meanwhile, the enhanced rigidity of C-terminal residues effectively protected the active center. These results fundamentally advanced our understanding of the CO2 activation process and efficient FDH for enzymatic CO2 activation and conversion.


Asunto(s)
Dióxido de Carbono , Formiato Deshidrogenasas , Dióxido de Carbono/metabolismo , Formiato Deshidrogenasas/genética , NAD/metabolismo , NADH Deshidrogenasa , Oxidación-Reducción , Formiatos/química
10.
J Biol Chem ; 300(1): 105550, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072055

RESUMEN

Methanogens are essential for the complete remineralization of organic matter in anoxic environments. Most cultured methanogens are hydrogenotrophic, using H2 as an electron donor to reduce CO2 to CH4, but in the absence of H2 many can also use formate. Formate dehydrogenase (Fdh) is essential for formate oxidation, where it transfers electrons for the reduction of coenzyme F420 or to a flavin-based electron bifurcating reaction catalyzed by heterodisulfide reductase (Hdr), the terminal reaction of methanogenesis. Furthermore, methanogens that use formate encode at least two isoforms of Fdh in their genomes, but how these different isoforms participate in methanogenesis is unknown. Using Methanococcus maripaludis, we undertook a biochemical characterization of both Fdh isoforms involved in methanogenesis. Both Fdh1 and Fdh2 interacted with Hdr to catalyze the flavin-based electron bifurcating reaction, and both reduced F420 at similar rates. F420 reduction preceded flavin-based electron bifurcation activity for both enzymes. In a Δfdh1 mutant background, a suppressor mutation was required for Fdh2 activity. Genome sequencing revealed that this mutation resulted in the loss of a specific molybdopterin transferase (moeA), allowing for Fdh2-dependent growth, and the metal content of the proteins suggested that isoforms are dependent on either molybdenum or tungsten for activity. These data suggest that both isoforms of Fdh are functionally redundant, but their activities in vivo may be limited by gene regulation or metal availability under different growth conditions. Together these results expand our understanding of formate oxidation and the role of Fdh in methanogenesis.


Asunto(s)
Formiato Deshidrogenasas , Methanococcus , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Methanococcus/genética , Methanococcus/metabolismo , Flavinas/metabolismo , Formiatos/metabolismo , Isoformas de Proteínas/metabolismo
11.
Small ; 20(14): e2306117, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37994262

RESUMEN

The reduction of carbon dioxide to valuable chemicals through enzymatic processes is regarded as a promising approach for the reduction of carbon dioxide emissions. In this study, an in vitro multi-enzyme cascade pathway is constructed for the conversion of CO2 into dihydroxyacetone (DHA). This pathway, known as FFFP, comprises formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH), formolase (FLS), and phosphite dehydrogenase (PTDH), with PTDH serving as the critical catalyst for regenerating the coenzyme NADH. Subsequently, the immobilization of the FFFP pathway within the hydrogen-bonded organic framework (HOF-101) is accomplished in situ. A 1.8-fold increase in DHA yield is observed in FFFP@HOF-101 compared to the free FFFP pathway. This enhancement can be explained by the fact that within FFFP@HOF-101, enzymes are positioned sufficiently close to one another, leading to the elevation of the local concentration of intermediates and an improvement in mass transfer efficiency. Moreover, FFFP@HOF-101 displays a high degree of stability. In addition to the establishment of an effective DHA production method, innovative concepts for the tailored synthesis of fine compounds from CO2 through the utilization of various multi-enzyme cascade developments are generated by this work.


Asunto(s)
Dióxido de Carbono , Formiato Deshidrogenasas , Dióxido de Carbono/química , Formiato Deshidrogenasas/química , Formiato Deshidrogenasas/metabolismo , Catálisis , Hidrógeno
12.
Biochimie ; 216: 194-204, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37925050

RESUMEN

NAD+-dependent formate dehydrogenase (FDH, EC 1.2.1.2) from the bacterium Staphylococcus aureus (SauFDH) plays an important role in the vital activity of this bacterium, especially in the form of biofilms. Understanding its mechanism and structure-function relationship can help to find special inhibitors of this enzyme, which can be used as medicines against staphylococci. The gene encoding SauFDH was successfully cloned and expressed in our laboratory. This enzyme has the highest kcat value among the described FDHs and also has a high temperature stability compared to other enzymes of this group. That is why it can also be considered as a promising catalyst for NAD(P)H regeneration in the processes of chiral synthesis with oxidoreductases. In this work, the principle of rational design was used to improve SauFDH catalytic efficiency. After bioinformatics analysis of the amino acid sequence in combination with visualization of the enzyme structure (PDB 6TTB), 9 probable catalytically significant positions 119, 194, 196, 217-219, 246, 303 and 323 were identified, and 16 new mutant forms of SauFDH were obtained and characterized by kinetic experiments. The introduction of the mentioned substitutions in most cases leads to a decrease in stability at high temperatures and an increase at low temperatures. Substitutions in positions 119 and 194 lead to a decreasing of KMNAD+. A consistent decrease in the Michaelis constant in the Ile-Val-Ala-Gly series at position 119 of SauFDH is shown. KMNAD+ of mutant SauFDH V119G decreased by 27 times compared to the wild-type enzyme. After substitution Phe194Val KMNAD + decreased by 3.5 times. The catalytic constant for this mutant form practically did not change. For this mutant form, an increase in catalytic efficiency was demonstrated through the use of a multicomponent buffer system.


Asunto(s)
Formiato Deshidrogenasas , NAD , NAD/metabolismo , Mutagénesis Sitio-Dirigida , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/química , Formiato Deshidrogenasas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Modelos Moleculares , Relación Estructura-Actividad , Cinética
13.
Diagn Microbiol Infect Dis ; 108(1): 116109, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37918188

RESUMEN

Staphylococcus epidermidis is an opportunistic bacterial pathogen. The study screened isolates of S. epidermidis of pediatric origin for genetic markers of discriminatory potential. 103 isolates (n = 75 clinical; n = 28 community) were screened for methicillin resistance (mecA), formate dehydrogenase (fdh) and an array of virulence factors through multiplex PCR and Congo red assay. The isolates were typed in four distinct categories, based on the presence of selected virulent factors. The type A clinical isolates carrying icaADBC operon (n = 22; 29.3%, P = 0.117) were not significantly differentiating the origin of isolates. The type B clinical isolates representing methicillin resistant S. epidermidis (MRSE) (n = 73; 97.3%, P < 0.00001) and the type C clinical isolates lacking formate dehydrogenase fdh (n = 62; 82.6%, P < 0.00001) were having significant discriminatory potential of clinical isolates, respectively. All type D community isolates were carrying fdh (n = 28; 100%, P < 0.00001). MecA and fdh are significant differential markers of pathogenicity and commensalism in S. epidermidis of pediatric origin.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus epidermidis , Niño , Humanos , Staphylococcus epidermidis/genética , Formiato Deshidrogenasas , Virulencia/genética , Infecciones Estafilocócicas/microbiología , Pakistán , Simbiosis , Antibacterianos , Proteínas Bacterianas/genética
14.
Biophys Chem ; 304: 107128, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37922819

RESUMEN

Engineering of reaction media is an exciting alternative for modulating kinetic properties of biocatalytic reactions. We addressed the combined effect of an aqueous two-phase system (ATPS) and high hydrostatic pressure on the kinetics of the Candida boidinii formate dehydrogenase-catalyzed oxidation of formate to CO2. Pressurization was found to lead to an increase of the binding affinity (decrease of KM, respectively) and a decrease of the turnover number, kcat. The experimental approach was supported using thermodynamic modeling with the electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT) equation of state to predict the liquid-liquid phase separation and the molecular crowding effect of the ATPS on the kinetic properties. The ePC-SAFT was able to quantitatively predict the KM-values of the substrate in both phases at 1 bar as well as up to a pressure of 1000 bar. The framework presented enables significant advances in bioprocess engineering, including the design of processes with significantly fewer experiments and trial-and-error approaches.


Asunto(s)
Formiato Deshidrogenasas , Formiato Deshidrogenasas/química , Formiato Deshidrogenasas/metabolismo , Biocatálisis , Cinética , Candida
15.
Bioresour Technol ; 394: 130187, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38096999

RESUMEN

The discovery of formate dehydrogenase (Me-FDH1) from Methylorubrum extorquens has provided an avenue for sustainable CO2 fixation and utilization. However, the mass production of Me-FDH1 is challenging due to the presence of its unique tungsto-bis-metalopterin guanine dinucleotide (W-bis-MGD) cofactor, limiting its practical applications. In this study, C. necator H16 is proposed as a host for the large-scale production of Me-FDH1, utilizing fructose as a carbon source and its inherent machinery for cofactor synthesis. In a minimal salt medium, C. necator H16 could produce active Me-FDH1, which exhibited a specific activity of 80 to 100 U/mg for CO2 conversion to formate. In fed batch bioreactor experiments, approximately 50 g CDW/L (cell dry weight/L) and 10,000 U/L Me-FDH1 were achieved within 50 h. This study highlights C. necator H16 as the recombinant host for Me-FDH1, paving the way for the future development of efficient mass-production methods for this crucial enzyme.


Asunto(s)
Cupriavidus necator , Formiato Deshidrogenasas , Dióxido de Carbono
16.
Appl Environ Microbiol ; 89(12): e0147423, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37966269

RESUMEN

IMPORTANCE: The strategy using structural homology with the help of structure prediction by AlphaFold was very successful in finding potential targets for the frhAGB-encoded hydrogenase of Thermococcus onnurineus NA1. The finding that the hydrogenase can interact with FdhB to reduce the cofactor NAD(P)+ is significant in that the enzyme can function to supply reducing equivalents, just as F420-reducing hydrogenases in methanogens use coenzyme F420 as an electron carrier. Additionally, it was identified that T. onnurineus NA1 could produce formate from H2 and CO2 by the concerted action of frhAGB-encoded hydrogenase and formate dehydrogenase Fdh3.


Asunto(s)
Hidrogenasas , Thermococcus , Thermococcus/genética , Hidrogenasas/genética , Formiato Deshidrogenasas/genética , Dióxido de Carbono , NADP
17.
J Am Chem Soc ; 145(47): 25850-25863, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37967365

RESUMEN

The oxygen-tolerant and molybdenum-dependent formate dehydrogenase FdsDABG from Cupriavidus necator is capable of catalyzing both formate oxidation to CO2 and the reverse reaction (CO2 reduction to formate) at neutral pH, which are both reactions of great importance to energy production and carbon capture. FdsDABG is replete with redox cofactors comprising seven Fe/S clusters, flavin mononucleotide, and a molybdenum ion coordinated by two pyranopterin dithiolene ligands. The redox potentials of these centers are described herein and assigned to specific cofactors using combinations of potential-dependent continuous wave and pulse EPR spectroscopy and UV/visible spectroelectrochemistry on both the FdsDABG holoenzyme and the FdsBG subcomplex. These data represent the first redox characterization of a complex metal dependent formate dehydrogenase and provide an understanding of the highly efficient catalytic formate oxidation and CO2 reduction activity that are associated with the enzyme.


Asunto(s)
Cupriavidus necator , Molibdeno , Molibdeno/química , Formiato Deshidrogenasas/química , Cupriavidus necator/metabolismo , Dióxido de Carbono/química , Oxidación-Reducción , Formiatos
18.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38003259

RESUMEN

Formate dehydrogenases catalyze the reversible oxidation of formate to carbon dioxide. These enzymes play an important role in CO2 reduction and serve as nicotinamide cofactor recycling enzymes. More recently, the CO2-reducing activity of formate dehydrogenases, especially metal-containing formate dehydrogenases, has been further explored for efficient atmospheric CO2 capture. Here, we investigate the nicotinamide binding site of formate dehydrogenase from Rhodobacter capsulatus for its specificity toward NAD+ vs. NADP+ reduction. Starting from the NAD+-specific wild-type RcFDH, key residues were exchanged to enable NADP+ binding on the basis of the NAD+-bound cryo-EM structure (PDB-ID: 6TG9). It has been observed that the lysine at position 157 (Lys157) in the ß-subunit of the enzyme is essential for the binding of NAD+. RcFDH variants that had Glu259 exchanged for either a positively charged or uncharged amino acid had additional activity with NADP+. The FdsBL279R and FdsBK276A variants also showed activity with NADP+. Kinetic parameters for all the variants were determined and tested for activity in CO2 reduction. The variants were able to reduce CO2 using NADPH as an electron donor in a coupled assay with phosphite dehydrogenase (PTDH), which regenerates NADPH. This makes the enzyme suitable for applications where it can be coupled with other enzymes that use NADPH.


Asunto(s)
NAD , Rhodobacter capsulatus , NADP/metabolismo , NAD/metabolismo , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Dióxido de Carbono/metabolismo , Electrones , Oxidación-Reducción , Oxidantes , Niacinamida , Cinética
19.
J Genet ; 1022023.
Artículo en Inglés | MEDLINE | ID: mdl-37850386

RESUMEN

The formate dehydrogenase (FDH) is regarded as a universal stress protein involved in various plant abiotic stress responses. This study aims to ascertain GmFDH function in conferring tolerance to aluminum (Al) stress. The bioinformatics analysis demonstrates that GmFDH from Tamba black soybean (TBS) encodes FDH. Quantitative reverse transcription-PCR (qRT-PCR) showed that GmFDH expression was induced by Al stress with a concentration-time-specific pattern. Moreover, Al stress promotes formate content and activates FDH activity. Further studies revealed that GmFDH overexpression alleviated root growth of tobacco under Al stress inhibition and reduced Al and ROS accumulation in roots. In addition, transgenic tobacco had much more root citrate exudation and much higher activity of antioxidant enzymes than wild type. Moreover, under Al stress, NtMATE and NtALS3 expression showed no changes in wild type and overexpression lines, suggesting that here the known Al-resistant mechanisms are not involved. However citrate synthase activity is higher in transgenic tobaccos than that of wild type, which might be the reason for citrate secretion increase. Thus, the increased Al tolerance of GmFDH overexpression lines is likely attributable to enhanced activities of antioxidant enzymes and promoting citrate secretion. Taken together, our findings advance understanding of higher plant Al toxicity mechanisms and suggest a possible new route towards the improvement of plant growth under Al stress.


Asunto(s)
Aluminio , Nicotiana , Nicotiana/genética , Aluminio/toxicidad , Aluminio/metabolismo , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Antioxidantes , Plantas Modificadas Genéticamente , Citratos/metabolismo , Raíces de Plantas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Chembiochem ; 24(24): e202300587, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37783667

RESUMEN

Most natural formate dehydrogenases (FDHs) exhibit NAD+ specificity, making it imperative to explore the engineering of FDH cofactor specificity for NADPH regeneration systems. The endogenous FDH of Komagataella phaffii (K. phaffii), termed KphFDH, is a typical NAD+ -specific FDH. However, investigations into engineering the cofactor specificity of KphFDH have yet to be conducted. To develop an NADP+ -specific variant of KphFDH, we selected D195, Y196, and Q197 as mutation sites and generated twenty site-directed variants. Through kinetic characterization, KphFDH/V19 (D195Q/Y196R/Q197H) was identified as the variant with the highest specificity towards NADP+ , with a ratio of catalytic efficiency (kcat /KM )NADP+ /(kcat /KM )NAD+ of 129.226. Studies of enzymatic properties revealed that the optimal temperature and pH for the reduction reaction of NADP+ catalyzed by KphFDH/V19 were 45 °C and 7.5, respectively. The molecular dynamics (MD) simulation was performed to elucidate the mechanism of high catalytic activity of KphFDH/V19 towards NADP+ . Finally, KphFDH/V19 was applied to an in vitro NADPH regeneration system with Meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum (StDAPDH/H227V). This study successfully created a KphFDH variant with high NADP+ specificity and demonstrated its practical applicability in an in vitro NADPH regeneration system.


Asunto(s)
NAD , Saccharomycetales , NADP/metabolismo , NAD/metabolismo , Formiato Deshidrogenasas/química , Saccharomycetales/metabolismo , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...